葡京信誉博彩(3)
专用芯片(ASIC)深度学习算法加速应用增多,可提供更高能效表现和计算效率ASIC(ApplicationSpecificIntegratedCircuits),即专用芯片,是一种为特定目的、面向特定用户需求设计的定制芯片,具备性能更强、体积小、功耗低、可靠性更高等优点。在大规模量产的情况下,还具备成本低的特点。
ASIC与GPU、FPGA不同,GPU、FPGA除了是一种技术路线之外,还是实实在在的确定产品,而ASIC只是一种技术路线或者方案,其呈现出的最终形态与功能也是多种多样的。
近年来,越来越多的公司开始采用ASIC芯片进行深度学习算法加速,其中表现最为突出的ASIC就是Google的TPU(张量处理芯片)。
TPU是谷歌为提升AI计算能力同时大幅降低功耗而专门设计的芯片。该芯片正式发布于2016年5月。
TPU之所以称为AI专用芯片,是因为它是专门针对TensorFlow等机器学习平台而打造,该芯片可以在相同时间内处理更复杂、更强大的机器学习模型。
谷歌通过数据中心测试显示,TPU平均比当时的GPU或CPU快15-30倍,性能功耗比(TFOPS/Watt)高出约30-80倍。
但是,ASIC一旦制造完成以后就不能修改了,且研发周期较长、商业应用风险较大,目前只有大企业或背靠大企业的团队愿意投入到它的完整开发中。
国外主要是谷歌在主导,国内企业寒武纪开发的Cambricon系列处理器也广泛受到关注。其中,华为海思的麒麟980处理器所搭载的NPU就是寒武纪的处理器IP。
短期内GPU仍将是AI芯片主导,长期看三大技术路线将呈现并行态势
短期内GPU仍将主导AI芯片市场,FPGA的使用将更为广泛
GPU短期将延续AI芯片的领导地位。GPU作为市场上AI计算最成熟、应用最广泛的通用型芯片,应用潜力较大。凭借其强大的计算能力、较高的通用性,GPU将继续占领AI芯片的主要市场份额。
当前,两大GPU厂商都还在不断升级架构并推出新品,深度学习性能提升明显,未来应用的场景将更为丰富。
英伟达凭借着其在矩阵运算上的优势,率先推出了专为深度学习优化的PascalGPU,而且针对GPU在深度学习上的短板,2018年推出了Volta架构,正在完成加速-运算-AI构建的闭环;AMD针对深度学习,2018年推出RadeonInstinct系列,未来将应用于数据中心、超算等AI基础设施上。
我们预计,在效率和场景应用要求大幅提升之前,作为数据中心和大型计算力支撑的主力军,GPU仍具有很大的优势。
FPGA是短期内AI芯片市场上的重要增长点,FPGA的最大优势在于可编程带来的配置灵活性,在当前技术与运用都在快速更迭的时期,FPGA具有明显的实用性。
企业通过FPGA可以有效降低研发调试成本,提高市场响应能力,推出差异化产品。
在专业芯片发展得足够完善之前,FPGA是最好的过渡产品,正因为如此,科技巨头纷纷布局云计算+FPGA的平台。
随着FPGA的开发者生态逐渐丰富,适用的编程语言增加,FPGA运用会更加广泛。因此短期内,FPGA作为兼顾效率和灵活性的硬件选择仍将是热点所在。
长期来看GPU、FPGA以及ASIC三大类技术路线将并存
GPU主要方向是高级复杂算法和通用型人工智能平台。
(1) 高端复杂算法实现方向。由于GPU本身就具备高性能计算优势,同时对于指令的逻辑控制上可以做的更复杂,在面向复杂AI计算的应用方面具有较大优势。
(2) 通用型的人工智能平台方向。GPU由于通用性强,性能较高,可以应用于大型人工智能平台够高效地完成不同种类的调用需求。
FPGA未来在垂直行业有着较大的空间。由于在灵活性方面的优势,FPGA对于部分市场变化迅速的行业最为实用。
同时,FPGA的高端器件中也可以逐渐增加DSP、ARM核等高级模块,以实现较为复杂的算法。
随着FPGA应用生态的逐步成熟,FPGA的优势也会逐渐为更多用户所认可,并得以广泛应用。
ASIC长远来看非常适用于人工智能,尤其是应对未来爆发的面向应用场景的定制化芯片需求。
ASIC的潜力体现在,AI算法厂商有望通过算法嵌入切入该领域,以进入如安防、智能驾驶等场景。